Click here to Download Assignment#1 | Click here to Download Cover Page
ONLINE PREVIEW:
STATEMENT:A PROGRAM TO FIND SUM AND AVERAGE VALUES OF ANY 20 NUMBERS USING ARRAY WITH FUNCTION.
ALGORITHM:
Step1 | Start |
Step2 | Initialize sum as 0 |
Step3 | Ask user to enter 20 different numbers |
Step4 | Call the integer function fxsum() |
Step5 | Display sum of numbers as ‘sum’ and their average as ‘sum/20’ |
Step6 | Stop |
Step1 | Start of userdefined integer function fxsum() |
Step2 | Initialize b=0 and i=0 |
Step3 | Is i<20? |
YES | Goto Step4 |
NO | Goto Step8 |
Step4 | Ask the value for a[i] |
Step5 | Increase the value of b by a[i] |
Step6 | Increase the value of i by 1 |
Step7 | Goto Step3 |
Step8 | Return the value of b to the calling function |
Step9 | Stop |
SOURCE CODE:
#include <stdio.h> |
#include <conio.h> |
void main() |
{ |
int fxsum(); |
int sum=0; |
clrscr(); |
printf("Enter 20 diferent numbers:\n\n"); |
sum=fxsum(); |
printf("\nThe Sum of numbers is : %d \nand their average is: %f",sum,(float)sum/20); |
getch(); |
} |
int fxsum() |
{ |
int a[20],i,b=0; |
for(i=0;i<20;i++) |
{ |
scanf("%d",&a[i]); |
b=b+a[i]; |
} |
return b; |
} |
OUTPUT SCREEN:
RESULT:
The result of this program is the sum total of 20 different integer numbers and their average as a floating point number.
The sum of multiple numbers can be easily and conveniently found with the use of array.
STATEMENT:A PROGRAM TO FIND MULTIPLICATION OF ANY 3X3 MATRIX.
ALGORITHM:
Step1 | Start |
Step2 | Initialize x=4 and y=0 as global variables |
Step3 | Ask user to enter 3x3 matrix A |
Step4 | Call a userdefined function askmat with parameter a |
Step5 | Ask user to enter 3x3 matrix B |
Step6 | Call a userdefined function askmat with parameter b |
Step7 | Call a userdefined function mulmat with parameter a,b |
Step8 | Stop |
Step1 | Start of userdefined function askmat() |
Step2 | Increase the value of y by 4 |
Step3 | Initialize i=0 |
Step4 | Is i<3? |
YES | Goto Step5 |
NO | Goto Step17 |
Step5 | Initialize j=0 |
Step6 | Is j<3? |
YES | Goto Step7 |
NO | Goto Step12 |
Step7 | Change cursor position to xth column and yth row on the screen |
Step8 | Ask user to enter the value of a[i][j] |
Step9 | Increase value of x by 2 |
Step10 | Increase value of j by 1 |
Step11 | Goto Step6 |
Step12 | Change the cursor position to next line |
Step13 | Increase the value of y by 2 |
Step14 | Reset the value of x=4 |
Step15 | Increase the value of i by 1 |
Step16 | Goto Step4` |
Step17 | Stop |
Step1 | Start of userdefined function mulmat() |
Step2 | Initialize the value of i=0 |
Step3 | Is i<3? |
YES | Goto Step4 |
NO | Goto Step12 |
Step4 | Initialize the value of j=0 |
Step5 | Is j<3? |
YES | Goto Step6 |
NO | Goto Step9 |
Step6 | Calculate c[i][j]=a[i][0]*b[0][j]+a[i][1]*b[1][j]+a[i][2]*b[2][j] |
Step7 | Increase the value of j by 1 |
Step8 | Goto Step5 |
Step9 | Change the cursor position to next line |
Step10 | Increase the value of i by 1 |
Step11 | Goto Step3 |
Step12 | Call the userdefined function showmat() |
Step13 | Stop |
Step1 | Start |
Step2 | Initialize the value of i=0 |
Step3 | Is i<3? |
YES | Goto Step4 |
NO | Goto Step12 |
Step4 | Initialize the value of j=0 |
Step5 | Is j<3? |
YES | Goto Step6 |
NO | Goto Step9 |
Step6 | Display c[i][j] and leave a tab space |
Step7 | Increase value of j by 1 |
Step8 | Goto Step5 |
Step9 | Change the cursor position to next line |
Step10 | Increase value of I by 1 |
Step11 | Goto Step3 |
Step12 | Stop |
SOURCE CODE:
#include <stdio.h> |
#include <conio.h> |
int x=4,y=0; |
void main() |
{ |
int a[3][3],b[3][3],i,j; |
void askmat(int a[][3]); |
void mulmat(int a[][3],int b[][3]); |
clrscr(); |
printf("\nEnter 3x3 matrix A:\n"); |
askmat(a); |
printf("\nEnter 3x3 matrix B:\n"); |
askmat(b); |
mulmat(a,b); |
getch(); |
} |
void askmat(int a[][3]) |
{ |
int i,j; |
y=y+4; |
for(i=0;i<3;i++) |
{ |
for(j=0;j<3;j++) |
{ |
gotoxy(x,y); |
scanf("%d",&a[i][j]); |
x=x+2; |
} |
printf("\n"); |
y=y+2; |
x=4; |
} |
} |
void mulmat(int a[][3],int b[][3]) |
{ |
int i,j,c[3][3]; |
void showmat(int a[][3]); |
for(i=0;i<3;i++) |
{ |
for(j=0;j<3;j++) |
{ |
c[i][j]=a[i][0]*b[0][j]+a[i][1]*b[1][j]+a[i][2]*b[2][j]; |
} |
printf("\n"); |
} |
showmat(c); |
} |
void showmat(int a[][3]) |
{ |
int i,j; |
printf("The product of 3x3 matrices is:\n"); |
for(i=0;i<3;i++) |
{ |
for(j=0;j<3;j++) |
{ |
printf("%d\t",a[i][j]); |
} |
printf("\n"); |
} |
} |
OUTPUT SCREEN:
RESULT:
The result of this program is the product of two 3x3 matrices found by computing two matrices.
CONCLUSION:
The product of any two 3x3 matrices can be found and represented easily in the form of two dimensional arrays.
COMMENTS:
Blogger Comments:
Emoticon Emoticon